What is engine knock/ detonation.

Before discussing compression ratio and boost, it is important to understand engine knock, also known as detonation. Knock is a dangerous condition caused by uncontrolled combustion of the air/fuel mixture. This abnormal combustion causes rapid spikes in cylinder pressure which can result in engine damage.


Three primary factors that influence engine knock are:

1. Knock resistance characteristics (knock limit) of the engine: Since every engine is vastly different when it comes to knock resistance, there is no single answer to “how much.” Design features such as combustion chamber geometry, spark plug location, bore size and compression ratio all affect the knock characteristics of an engine.

2. Ambient air conditions: For the turbocharger application, both ambient air conditions and engine inlet conditions affect maximum boost. Hot air and high cylinder pressure increases the tendency of an engine to knock. When an engine is boosted, the intake air temperature increases, thus increasing the tendency to knock. Charge air cooling (e.g. an intercooler) addresses this concern by cooling the compressed air produced by the turbocharger.

3. Octane rating of the fuel being used: octane is a measure of a fuel’s ability to resist knock. The octane rating for pump gas ranges from 85 to 94, while racing fuel would be well above 100. The higher the octane rating of the fuel, the more resistant to knock. Since knock can be damaging to an engine, it is important to use fuel of sufficient octane for the application. Generally speaking, the more boost run, the higher the octane requirement.

This cannot be overstated: engine calibration of fuel and spark plays an enormous role in dictating knock behavior of an engine.